

demosys-py documentation

A Python 3 cross platform OpenGL 3.3+ core framework based on ModernGL [https://github.com/cprogrammer1994/ModernGL]

	[image: screenshot1]

	[image: screenshot2]

Warning

The documentation for 2.0 is currently work in progress and you may find some sections outdated

Getting Started

	Getting Started
	Create a virtualenv

	Setting up a Project

	Creating an Effect Package

User Guide

	User Guide
	Effects

	Project

	The geometry module

	Timers

	Timeline

	Matrix and Vector math with pyrr

	Performance

	Audio

	Controls
	Basic Keyboard Controls

	Camera Controls

Reference

	Reference
	Effect

	VAO

	geometry

Settings

	Settings
	OPENGL

	WINDOW

	SCREENSHOT_PATH

	MUSIC

	TIMER

	ROCKET

	TIMELINE

	PROGRAM_DIRS/PROGRAM_FINDERS

	PROGRAM_LOADERS

	TEXTURE_DIRS/TEXTURE_FINDERS

	TEXTURE_LOADERS

	SCENE_DIRS/SCENE_FINDERS

	SCENE_LOADERS

	DATA_DIRS/DATA_FINDERS

	DATA_LOADERS

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Make sure you have Python 3.5 or later installed. On Windows and OS X you can
simply install the latest Python 3 by downloading an installer from the
Official Python site [https://www.python.org/].

Create a virtualenv

First of all create a directory for your project and navigate to it using a
terminal. We assume Python 3.6 here.

OS X / Linux

python3.6 -m pip install virtualenv
python3.6 -m virtualenv env
source env/bin/activate

Windows

python36.exe -m pip install virtualenv
python36.exe -m virtualenv env
.\env\Scripts\activate

We have now created and activated an isolated Python environment and are
ready to install packages without affecting the Python versions in our
operating system.

Setting up a Project

Install the demosys-py

pip install demosys-py

This will add a new command demosys-admin we use to create a project.

demosys-admin createproject myproject

This will generate the following files:

myproject
└── settings.py
└── project.py
manage.py

	settings.py: the settings for your project

	project.py: your project config

	manage.py: entrypoint script for running your project

These files can be left unchanged for now. We mainly need manage.py
as an entrypoint to the framework and the default settings should be enough.

	An overview of the settings can be found in the /reference/settings section.

	More information about projects can be found in the Project section.

Creating an Effect Package

In order to draw something to the screen we have to make an effect package
with at least one effect. We can create this effect package in the root
or inside myproject. Since we don’t care about project (yet), we
create it in the root.

demosys-admin createeffect cube

We should now have the following structure:

cube
├── effects.py
├── dependencies.py
└── resources
 └── programs
 └── cube
 └── default.glsl

The cube directory is a copy of the deault effect pacakge template:

	The effects.py module containing one or multiple demosys.effects.Effect implementation

	A dependencies.py module describing effect package dependencies and resources for this package

	A local resources/programs directory for glsl shader programs specific to the effect

dependencies.py:

from demosys.resources.meta import ProgramDescription

We don't depend on any other effect packages at the moment
effect_packages = []

We tell the system to load our shader program storing it with label "cube_plain".
The shader program can then be obtained in the effect instance using this label.
resources = [
 ProgramDescription(label='cube_plain', path='cube_plain.glsl'),
]

Other resource types are also supported such as textures, programs, scenes/meshes
and miscellaneous data types. More on this in the Resources section.

Also take a minute to look through the effects.py module. It contains a fair amount
of comments what will explain things. This should be very recognizalbe if you have worked
with OpenGL.

Note

Notice the programs directory also has a sub-folder
with the same name as the effect package. This is because these directories are added
to a search path for all programs and the only way to make these resources unique
is to put them in a directory.

We can now run the effect that shows a spinning cube

python manage.py runeffect cube

Effect packages can be reusable between projects and can also potentially be shared with
others as python packages in private repos or on Python Package Index [http://test.org].

User Guide

	Effects
	The Effect Package

	Dependencies

	Resources

	Project
	Effects

	manage.py

	Effect Templates

	Management Commands

	The geometry module
	Scene/Mesh File Formats

	Generating Custom Geometry

	Timers
	Standard Timers

	Custom Timer

	Timeline

	Matrix and Vector math with pyrr
	Examples

	Type conversion

	Performance

	Audio

Effects

In order to actually render something to the screen you need to make one or
multiple effects. What these effects are doing is entirely up to you.
Effects have methods for fetching loaded resources and existing effect instances.
Effects can also create new instances of effects if needed. This would
happend during initialization.

Effect examples can be found in the examples directory in the root of the repository.

The Effect Package

The effect package should have the following structure (assuming our effect is
named “cube”).

cube
├── effects.py
├── dependencies.py
└── resources
 └── programs
 └── cube
 └── cube.glsl
 └── textures
 └── scenes
 └── data

The effects.py module can contain one or multiple effects.
The effect package can also have no effects and all and only
provide resources for other effects to use. The effects.py
module is still required to be present.

Dependencies

The dependencies.py module is required to be present. It describes
its own resources and what effect packages it may depend on.

Example:

from demosys.resources.meta import ProgramDescription

effect_packages =
 'full.python.path.to.another.package',
]

resources = [
 ProgramDescription(label='cube_plain', path='cube_plain.glsl'),
]

Resources are given labels and effects can fetch them by this label.
When adding effect package dependencies we make the system aware
of this package so their resources are also loaded. The effects
in the depending package will also be registered in the system
and can be instantiated.

Resources

The resources directory contains fixed directory names where resources
of specific types are supposed to be located. When an effect package is loaded
paths to these directories are added so the system can find them.

Note

Notice that the resource directories contains another sub-directory
with the same name as the effect package. This is because these
folders are by default added to a project wide search path
(for each resource type),
so we should place it in a directory to reduce the chance of a name collisions.

Having resources in the effect package itself is entirely optional.
Resources can be located anywhere you want as long as you tell the system
where they can be found. This is covered in Settings.

Reasons to have resources in effect packages is to create an independent
resuable effect package you could even distribute. Also when a project
grows with lots of effect packages it can be nice to keep the effect
specific resources in the effect package they belong to instead of
putting all resources for the entire project in the same location.

The Effect base class have methods avaiable for fetching loaded resources.
See the demosys.effects.Effect

Project

Before we can do anything with the framework we need to create a project.
A project is simply a package containing a settings.py module
and a manage.py entrypoint script.

This can be auto-generated using the demosys-admin command:

demosys-admin createproject myproject

This will generate the following structure:

myproject
└── settings.py
manage.py

	settings.py is the settings for your project with good defaults. See
Settings for more info.

	manage.py is the entrypoint for running your project

Effects

A good idea to put effect packages inside the project package as
this protects you from package name collisions. It’s of course also fine
to put them at the same level as your project or even have them in separate
repositories and install them as packages thought pip.

manage.py

The manage.py script is an alternative entry point to demosys-admin.
Both can perform the same commands. The main purpose of demosys-admin
is to initially have an entry point to the commands creating
a projects and effects when we don’t have a manage.py yet.

Examples of manage.py usage:

Create effect inside a project
python manage.py createeffect myproject/myeffect
Run a specific effect
python manage.py runeffect myproject.myeffect
Run using the configured effect manager
python manage.py run
Run a cusom command
python manage.py <cusom command>

Effect Templates

A collection of effect templates reside in effect_templates directory.
To list the available templates:

$./manage.py createeffect --template list
Available templates: cube_simple, sphere_textured, raymarching_simple

To create a new effect with a specific template

$./manage.py createeffect myproject/myeffect --template raymarching_simple

Note

If you find the current effect templates insufficent
please make a pull request or report the issue on github.

Management Commands

Custom commands can be added to your project. This can be useful when you need
additional tooling or whatever you could imagine would be useful to run from
manage.py.

Creating a new command is fairly straight forward. Inside your project package,
create the management/commands/ directories. Inside the commands directory
we can add commands. Let’s add the command test.

The project structure (excluding effects) would look something like:

myproject
└── settings.py
└── management
 └── commands
 └── test.py

Notice we added a test module inside commands. The name of the module
will be name of the command. We can reach it by:

./manage.py test

Our test command would look like this:

from demosys.core.management.base import BaseCommand

class Command(BaseCommand):
 help = "Test command"

 def add_arguments(self, parser):
 parser.add_argument("message", help="A message")

 def handle(self, *args, **options):
 print("The message was:", options['message'])

	add_arguments exposes a standard argparser we can add arguments for the
command.

	handle is the actual command logic were the parsed arguments are passed
in

	If the parameters to the command do not meet the requirements for the parser,
a standard arparse help will be printed to the terminal

	The command class must be named Command and there can only be one command
per module

This is pretty much identical to who management commands are done in django.

The geometry module

The demosys.geometry module currently provides some simple
functions to generate VAOs for simple things.

Examples:

from demosys import geometry
Create a fullscreen quad for overing the entire screen
vao = geometry.quad_fs()
Create a 1 x 1 quad on the xy plane
vao = geometry.quad_2f(with=1.0, height=1.0)
Create a unit cube
vao = geometry.cube(1.0, 1.0, 1.0)
Create a bounding box
vao = geometry.bbox()
Create a sphere
vao = geometry.sphere(radius=0.5, sectors=32, rings=16)
Random 10.000 random points in 3d
vao = geometry.points_random_3d(10_000)

Note

Improvements or suggestions can be made by through pull
requests or issues on github.

See the geometry reference for more info.

Scene/Mesh File Formats

The demosys.scene.loaders currently support loading
wavefront obj files and gltf.

You can create your own scene loader by adding the loader
class to SCENE_LOADERS.

SCENE_LOADERS = (
 'demosys.scene.loaders.gltf.GLTF2',
 'demosys.scene.loaders.wavefront.ObjLoader',
)

Generating Custom Geometry

To efficiently generate geometry in Python we must avoid as much memory
allocation as possible. If performance doesn’t matter, then take this
section lightly. Lbraries like numpy can also be used to generate
geometry.

The naive way of generating geometry would probably look something like this:

import numpy
import moderngl
from pyrr import Vector3

def random_points(count):
 points = []
 for p in range(count):
 # Let's pretend we calculated random values for x, y, z
 points.append(Vector3([x, y, x]))

 # Create VBO enforcing float32 values with numpy
 points_data = numpy.array(points, dtype=numpy.float32)

 vao = VAO("random_points", mode=moderngl.POINTS)
 vao.buffer(points_data, 'f4', "in_position")
 return vao

This works perfectly fine, but we allocate a new list for every iteration
and pyrr internally creates a numpy array. The points list will also
have to dynamically expand. This gets exponentially more ugly as the count
value increases.

We move on to version 2:

def random_points(count):
 # Pre-allocate a list containing zeros of length count * 3
 points = [0] * count * 3
 # Loop count times incrementing by 3 every frame
 for p in range(0, count * 3, 3):
 # Let's pretend we calculated random values for x, y, z
 points[p] = x
 points[p + 1] = y
 points[p + 2] = z

 points_data = numpy.array(points, dtype=numpy.float32)

This version is orders of magnitude faster because we don’t allocate memory
in the loop. It has one glaring flaw. It’s not a very pleasant read
even for such simple task, and it will not get any better if we add more complexity.

Let’s move on to version 3:

def random_points(count):
 def generate():
 for p in range(count):
 # Let's pretend we calculated random values for x, y, z
 yield x
 yield y
 yield z

 points_data = numpy.fromiter(generate(), count=count * 3, dtype=numpy.float32)

Using generators in Python like this is much a cleaner way. We also take
advantage of numpy’s fromiter() that basically slurps up all the
numbers we emit with yield into its internal buffers. By also telling
numpy what the final size of the buffer will be using the count
parameter, it will pre-allocate this not having to dynamically increase
its internal buffer.

Generators are extremely simple and powerful. If things get complex we can
easily split things up in several functions because Python’s yield from
can forward generators.

Imagine generating a single VBO with interleaved position, normal and uv data:

def generate_stuff(count):
 # Returns a distorted position of x, y, z
 def pos(x, y, z):
 # Calculate..
 yield x
 yield y
 yield x

 def normal(x, y, z):
 # Calculate
 yield x
 yield y
 yield z

 def uv(x, y, x):
 # Calculate
 yield u
 yield v

 def generate(count):
 for i in range(count):
 # resolve current x, y, z pos
 yield from pos(x, y, z)
 yield from normal(x, y, z)
 yield from uv(x, y, z)

 interleaved_data = numpy.fromiter(generate(), count=count * 8, dtype=numpy.float32)

Timers

Timers are classes keeping track of time passing the value
to the effect’s draw methods. We should assume that time can move
in any direction at any speed. Time is always reported as a float in
seconds.

The default timer if not specified in settings:

TIMER = 'demosys.timers.Timer'

This is a simple timer starting at 0 when effects start drawing.
All timers should respond correctly to pause SPACE.

Standard Timers

	demosys.timers.Timer: Default timer just tracking time in seconds

	demosys.timers.Music: Timer playing music reporting duration in the song

	demosys.timers.RocketTimer: Timer using the rocket sync system

	demosys.timers.RocketMusicTimer: Timer using the rocket sync system with
music playback

Custom Timer

You create a custom timer by extending demosys.timers.base.BaseTimer.

	
class demosys.timers.base.BaseTimer(**kwargs)

	Timer based on glfw time

	
get_time()

	Get the current time in seconds (float)

	
pause()

	Pause the timer

	
set_time(value)

	Set the current time

	
start()

	Start the timer

	
stop()

	Stop the timer

	
toggle_pause()

	Toggle pause

Timeline

Timeline info

Matrix and Vector math with pyrr

Pyrr has both a procedural and object oriented api.

See pyrr [https://pyrr.readthedocs.io/en/latest/] for official docs.

Note

We should probably add some more examples here. Feel free to
make an issue or pull request on github.

Examples

Identity

procedural
>> m = matrix44.create_identity()
>> print(m)
array([[1., 0., 0., 0.],
 [0., 1., 0., 0.],
 [0., 0., 1., 0.],
 [0., 0., 0., 1.]])

object
>> m = Matrix44.identity()
>> print(m)
array([[1., 0., 0., 0.],
 [0., 1., 0., 0.],
 [0., 0., 1., 0.],
 [0., 0., 0., 1.]])

Matrices produced by Matrix44 are also just numpy arrays as the class extends numpy.ndarray.
We can pretty much use the APIs interchangeably unless we rely on a method in the class.
They can both be passed right into shaders as matrix uniforms.

Rotation

Short version
mat = Matrix44.from_eulers(Vector3(rotation))

Long version
rot_x = matrix44.create_from_x_rotation(rotation[0])
rot_y = matrix44.create_from_y_rotation(rotation[1])
rot_z = matrix44.create_from_z_rotation(rotation[2])
mat = matrix44.multiply(x, y)
mat = matrix44.multiply(mat, z)

Type conversion

mat4 to mat3
mat3 = Matrix33.from_matrix44(mat)
mat3 to mat4
mat4 = Matrix44.from_matrix33(mat)

Performance

When using a high level language such as Python for real time rendering we must
be extra careful with the total time we spend in Python code every frame.
At 60 frames per second we only have 16 milliseconds to get the job done.
This is ignoring delays or blocks caused by OpenGL calls.

Note

How important performance is will of course depend on the project.
Visualization for a scientific application doing some heavy
calculations would probably not need to run at 60+ fps.
It’s also not illegal to not care about performance.

Probably the biggest enemy to performance in python is memory allocation.
Try to avoid creating new objects when possible.

Try to do as much as possible on the GPU. Use features like transform
feedback to alter buffer data and use your creativity to find efficient
solutions.

When doing many draw calls, do as little as possible between those
draw calls. Doing matrix math in python even with numpy or pyrr
is extremely slow. Try to calculate them ahead of time. Also
moving the matrix calculations inside the shader programs can
help greatly. You can easily do 1000 draw calls using the same
cube and still run 60+ fps even on older hardware. The minute
you throw in some matrix calculation in that loop you might
be able to draw 50 before the framerate tanks.

Performance in rendering is not straight forward to measure in any language.
Simply adding timers in the code will not really tell us much unless
we also query OpenGL about the performance.

We can also strive to do more with less. Rendering, in the end, is really just
about creating illusions.

Audio

We currently use pygame’s mixer module for music playback.
More work needs to be done to find a better alternative
as depending on such a huge package should not be needed.

You will have to manually add pygame to your requirements
and pip install the package.

In oder to get pygame to work you probably need sdl, sdl_mixer
and libvorbis. These are binary dependencies and not python
packages.

We need to figure out what requiremnets are actually needed.

As mentioned in readme, the state of audio is not in good shape.

The sound player an be a bit wonky at times on startup refusing to play
on some platforms. We have tried a few libraries and ended up using
pygame’s mixer module. (Optional setup for this)

Audio Requirements:

	As the current position in the music is what all
draw timers are based on, we need a library that can deliver very accurate
value for this.

	Efficient and accurate seeking + pause support

	Some way to extract simple data from the music for visualisation

Controls

Basic Keyboard Controls

	ESC to exit

	SPACE to pause the current time (tells the configured timer to pause)

	X for taking a screenshot (output path is configurable in Settings)

Camera Controls

You can include a system camera in your effects through self.sys_camera.
Simply apply the view_matrix of the camera to your transformations.

Keyboard Controls:

	W forward

	S backwards

	A strafe left

	D strafe right

	Q down the y axis

	E up the y axis

	R reload shader programs (Needs configuration)

Mouse Controls

	Standard yaw/pitch camera rotation with mouse

Reference

	Effect
	Initialization

	Draw Methods

	Resource Methods

	Utility Methods

	Attributes

	VAO
	Methods

	geometry
	Functions

Effect

	
demosys.effects.Effect

	Effect base class that should be extended when making an effect

Example:

from demosys.effects import Effect

class MyEffect(Effect):
 def __init__(self):
 # Initalization

 def draw(self, time, frametime, target):
 # Draw stuff

Initialization

	
Effect.__init__(*args, **kwargs)

	Implement the initialize when extending the class.
This method is responsible for fetching resources
and doing genereal initalization of the effect.

The effect initializer is called when all resources are loaded
with the exception of resources loaded by other effects in
the initializer.

The siganture of this method is entirely up to you.

You do not have to call the superclass initializer though super()

Example:

def __init__(self):
 # Fetch reference to resource by their label
 self.program = self.get_program('simple_textured')
 self.texture = self.get_texture('bricks')
 # .. create a cube etc ..

	
Effect.post_load()

	Override this method if needed when creating an effect.

Called after all effects are initialized before drawing starts.
Some initialization may be neccessary to do here such as
interaction with other effects.

Draw Methods

	
Effect.draw(time, frametime, target)

	Draw function called by the system every frame when the effect is active.
You are supposed to override this method.

	Parameters

	
	time (float) – The current time in seconds.

	frametime (float) – The time the previous frame used to render in seconds.

	target (moderngl.Framebuffer) – The target FBO for the effect.

Resource Methods

	
Effect.get_texture(label) → moderngl.texture.Texture

	Get a texture by its label

	Parameters

	label (str) – The Label for the texture

	Returns

	The py:class:moderngl.Texture instance

	
Effect.get_program(label) → moderngl.program.Program

	Get a program by its label

	Parameters

	label (str) – The label for the program

Returns: py:class:moderngl.Program instance

	
Effect.get_scene(label) → demosys.scene.scene.Scene

	Get a scene by its label

	Parameters

	label (str) – The label for the scene

Returns: The Scene instance

	
Effect.get_data(label) → Any

	Get a data instance by its label

	Parameters

	label (str) – Label for the data instance

	Returns

	Contents of the data file

	
Effect.get_effect(label) → demosys.effects.effect.Effect

	Get an effect instance by label.
This is only possible when you have your own Project

	Parameters

	label (str) – Label for the data file

Returns: The Effect instance

	
Effect.get_effect_class(effect_name, package_name=None) → Type[Effect]

	Get an effect class.

	Parameters

	effect_name (str) – Name of the effect class

	Keyword Arguments

	package_name (str) – The package the effect belongs to

	Returns

	Effect class

	
Effect.get_track(name) → rocket.tracks.Track

	This is only avaiable when using a Rocket timer.

Get or create a rocket track. This only makes sense when using rocket timers.
If the resource is not loaded yet, an empty track object
is returned that will be populated later.

	Parameters

	name (str) – The rocket track name

	Returns

	The rocket.Track instance

Utility Methods

	
Effect.create_projection(fov=75.0, near=1.0, far=100.0, aspect_ratio=None)

	Create a projection matrix with the following parameters.
When aspect_ratio is not provided the configured aspect
ratio for the window will be used.

:param : param float fov: Field of view (float)
:param : param float near: Camera near value
:param : param float far: Camrea far value

	Parameters

	ratio (float) – Aspect ratio of the window

Returns: The projection matrix as a float32 numpy.array

	
Effect.create_transformation(rotation=None, translation=None)

	Creates a transformation matrix woth rotations and translation.

	Parameters

	
	rotation – 3 component vector as a list, tuple, or pyrr.Vector3

	translation – 3 component vector as a list, tuple, or pyrr.Vector3

	Returns

	A 4x4 matrix as a numpy.array

	
Effect.create_normal_matrix(modelview)

	Creates a normal matrix from modelview matrix

	Parameters

	modelview – The modelview matrix

	Returns

	A 3x3 Normal matrix as a numpy.array

Attributes

	
Effect.runnable = True

	The runnable status of the effect instance.
A runnable effect should be able to run with the runeffect command
or run in a project

	
Effect.ctx

	The ModernGL context

	
Effect.window

	The Window

	
Effect.sys_camera

	The system camera responding to input

	
Effect.name

	Full python path to the effect

	
Effect.label

	Full python path to the effect

VAO

	
class demosys.opengl.vao.VAO(name, mode=4)

	Represents a vertex array object.
A name must be provided for debug puporses.
The default draw mode is moderngl.TRIANGLES

Methods

	
VAO.buffer(buffer, buffer_format:str, attribute_names, per_instance=False)

	Register a buffer/vbo for the VAO. This can be called multiple times.
adding multiple buffers (interleaved or not)

	Parameters

	
	buffer – The buffer object. Can be ndarray or Buffer

	buffer_format – The format of the buffer (‘f’, ‘u’, ‘i’)

	Returns

	The buffer object

	
VAO.index_buffer(buffer, index_element_size=4)

	Set the index buffer for this VAO

	Parameters

	
	buffer – Buffer object or ndarray

	index_element_size – Byte size of each element. 1, 2 or 4

	
VAO.instance(program:Program) → VertexArray

	Obtain the moderngl.VertexArray instance for the program

	Returns

	moderngl.VertexArray

	
VAO.render(program:Program, mode=None, vertices=-1, first=0, instances=1)

	Render the VAO.

	Parameters

	
	program – The program to draw with

	mode – Override the draw mode (TRIANGLES etc)

	vertices – The number of vertices to transform

	first – The index of the first vertex to start with

	instances – The number of instances

	
VAO.render_indirect(program:Program, buffer, mode=None, count=-1, first=0)

	The render primitive (mode) must be the same as the input primitive of the GeometryShader.
The draw commands are 5 integers: (count, instanceCount, firstIndex, baseVertex, baseInstance).

	Parameters

	
	program – (Buffer) Indirect drawing commands.

	buffer – (Buffer) Indirect drawing commands.

	mode – (int) By default TRIANGLES will be used.

	count – (int) The number of draws.

	first – (int) The index of the first indirect draw command.

	
VAO.transform(program:Program, buffer:Buffer, mode=None, vertices=-1, first=0, instances=1)

	Transform vertices. Stores the output in a single buffer.

	Parameters

	
	program – The program

	buffer – The buffer to store the output

	mode – Draw mode (for example POINTS

	vertices – The number of vertices to transform

	first – The index of the first vertex to start with

	instances – The number of instances

	
VAO.release(buffer=True)

	Destroy the vao object

	Parameters

	buffers – (bool) also release buffers

geometry

The geometry module is a collection of functions
generating simple geometry / VAOs.

Functions

	
demosys.geometry.quad_fs() → VAO

	Creates a screen aligned quad.

	
demosys.geometry.quad_2d(width, height, xpos=0.0, ypos=0.0) → VAO

	Creates a 2D quad VAO using 2 triangles.

	Parameters

	
	width – Width of the quad

	height – Height of the quad

	xpos – Center position x

	ypos – Center position y

	
demosys.geometry.cube(width, height, depth, center=(0.0, 0.0, 0.0), normals=True, uvs=True) → VAO

	Generates a cube VAO. The cube center is (0.0, 0.0 0.0) unless other is specified.

	Parameters

	
	width – Width of the cube

	height – height of the cube

	depth – depth of the cube

	center – center of the cube

	normals – (bool) Include normals

	uvs – (bool) include uv coordinates

	Returns

	VAO representing the cube

	
demosys.geometry.bbox(width=1.0, height=1.0, depth=1.0) → VAO

	Generates a bounding box.
This is simply a box with LINE_STRIP as draw mode

	Parameters

	
	width – Width of the box

	height – height of the box

	depth – depth of the box

	Returns

	VAO

	
demosys.geometry.plane_xz(size=(10, 10), resolution=(10, 10)) → VAO

	Generates a plane on the xz axis of a specific size and resolution

	Parameters

	
	size – (x, y) tuple

	resolution – (x, y) tuple

	Returns

	VAO

	
demosys.geometry.points_random_3d(count, range_x=(-10.0, 10.0), range_y=(-10.0, 10.0), range_z=(-10.0, 10.0), seed=None) → VAO

	Generates random positions

	Parameters

	
	count – Number of points

	range_x – min-max range for x axis

	range_y – min-max range for y axis

	range_z – min-max range for z axis

	seed – The random seed to be used

	
demosys.geometry.sphere(radius=0.5, sectors=32, rings=16) → VAO

	Generate a sphere

	Parameters

	
	radius – Radius or the sphere

	rings – number or horizontal rings

	sectors – number of vertical segments

	Returns

	VAO containing the sphere

Settings

The settings.py file must be present in your project in order to
run the framework.

When running your project with manage.py, the script will set
the DEMOSYS_SETTINGS_MODULE environment variable. This tells
the framework where it can import the project settings. If the environment
variable is not set, the project cannot start.

OPENGL

Sets the minimum required OpenGL version to run your project.
A forward compatible core context will be always be requested. This means
the system will pick the highest available OpenGL version available.

The default and lowest OpenGL version is 3.3 to support a wider
range of hardware.

Note

To make your project work on OS X you cannot move past version 4.1.

OPENGL = {
 "version": (3, 3),
}

Only increase the OpenGL version if you use features above 3.3.

WINDOW

Window/screen properties. Most importantly the class attribute
decides what class should be used to handle the window.

The currently supported classes are:

	demosys.context.pyqt.Window PyQt5 window (default)

	demosys.context.glfw.Window pyGLFW window

	demosys.context.pyglet.Window Pyglet window (Not for OS X)

	demosys.context.headless.Window Headless window

WINDOW = {
 "class": "demosys.context.pyqt.Window",
 "size": (1280, 768),
 "aspect_ratio": 16 / 9,
 "fullscreen": False,
 "resizable": False,
 "vsync": True,
 "title": "demosys-py",
 "cursor": False,
}

Other Properties:

	size: The window size to open.

	aspect_ratio is the enforced aspect ratio of the viewport.

	fullscreen: True if you want to create a context in fullscreen mode

	resizable: If the window should be resizable. This only applies in
windowed mode.

	vsync: Only render one frame per screen refresh

	title: The visible title on the window in windowed mode

	cursor: Should the mouse cursor be visible on the screen? Disabling
this is also useful in windowed mode when controlling the camera on some
platforms as moving the mouse outside the window can cause issues.

The created window frame buffer will by default use:

	RGBA8 (32 bit per pixel)

	24 bit depth buffer

	Double buffering

	color and depth buffer is cleared for every frame

SCREENSHOT_PATH

Absolute path to the directory screenshots will be saved.
Screenshots will end up in the project root of not defined.
If a path is configured, the directory will be auto-created.

SCREENSHOT_PATH = os.path.join(PROJECT_DIR, 'screenshots')

MUSIC

The MUSIC attribute is used by timers supporting audio playback.
When using a timer not requiring an audio file, the value is ignored.
Should contain a string with the absolute path to the audio file.

Note

Getting audio to work requires additional setup.
See the /guides/audio section.

MUSIC = os.path.join(PROJECT_DIR, 'resources/music/tg2035.mp3')

TIMER

This is the timer class that controls the current time in your project.
This defaults to demosys.timers.clock.Timer that is simply keeps
track of system time.

TIMER = 'demosys.timers.clock.Timer'

Other timers are:

	demosys.timers.MusicTimer requires MUSIC to be defined and will
use the current time in an audio file.

	demosys.timers.RocketTimer is the same as the default timer, but uses
the pyrocket library with options to connect to an external sync tracker.

	demosys.timers.RocketMusicTimer requires MUSIC and ROCKET to
be configured.

Custom timers can be created.
More information can be found in the Timers section.

ROCKET

Configuration of the pyrocket [https://github.com/Contraz/pyrocket] sync-tracker library.

	rps: Number of rows per second

	mode: The mode to run the rocket client

	editor: Requires a rocket editor to run so the library can
connect to it

	project: Loads the project file created by the editor and plays it back

	files: Loads the binary track files genrated by the client through
remote export in the editor

	project_file: The absolute path to the project file (xml file)

	files: The absolute path to the directory containing binary track data

ROCKET = {
 "rps": 24,
 "mode": "editor",
 "files": None,
 "project_file": None,
}

TIMELINE

A timeline is a class deciding what effect(s) should be rendered
(including order) at any given point in time.

Default timeline only rendeing a single effect at all times
TIMELINE = 'demosys.timeline.single.Timeline'

You can create your own class handling this logic.
More info in the Timeline section.

PROGRAM_DIRS/PROGRAM_FINDERS

PROGRAM_DIRS contains absolute paths the FileSystemFinder will
look for shaders programs.

EffectDirectoriesFinder will look for programs in all registered effect packages
in the order they were added. This assumes you have a resources/programs directory in
your effect packages.

A resource can have the same path in multiple locations. The system will return
the last occurance of the resource. This way it is possible to override resources.

This is the defaults is the property is not defined
PROGRAM_FINDERS = (
 'demosys.core.programfiles.finders.FileSystemFinder',
 'demosys.core.programfiles.finders.EffectDirectoriesFinder',
)

Register a project-global programs directory
These paths are searched last
PROGRAM_DIRS = (
 os.path.join(PROJECT_DIR, 'resources/programs'),
)

PROGRAM_DIRS can really be any directory and doesn’t need to end with /programs

PROGRAM_LOADERS

Program loaders are classes responsible for loading resources.
Custom loaders can easily be created.

Programs have a default set of loaders if not specified.

PROGRAM_LOADERS = (
 'demosys.loaders.program.single.Loader',
 'demosys.loaders.program.separate.Loader',
)

TEXTURE_DIRS/TEXTURE_FINDERS

Same principle as `PROGRAM`_DIRS and PROGRAM_FINDERS.
The EffectDirectoriesFinder will look for a textures directory in effects.

Finder classes
TEXTURE_FINDERS = (
 'demosys.core.texturefiles.finders.FileSystemFinder',
 'demosys.core.texturefiles.finders.EffectDirectoriesFinder'
)

Absolute path to a project-global texture directory
TEXTURE_DIRS = (
 os.path.join(PROJECT_DIR, 'resources/textures'),
)

TEXTURE_LOADERS

Texture loaders are classes responsible for loading textures.
These can be easily customized.

The default texture loaders:

TEXTURE_LOADERS = (
 'demosys.loaders.texture.t2d.Loader',
 'demosys.loaders.texture.array.Loader',
)

SCENE_DIRS/SCENE_FINDERS

Same principle as PROGRAM_DIRS and PROGRAM_FINDERS.
This is where scene files such as wavefront and gltf files are loaded from.
The EffectDirectoriesFinder will look for a scenes directory

Finder classes
SCENE_FINDERS = (
 'demosys.core.scenefiles.finders.FileSystemFinder',
 'demosys.core.scenefiles.finders.EffectDirectoriesFinder'
)

Absolute path to a project-global scene directory
SCENE_DIRS = (
 os.path.join(PROJECT_DIR, 'resources/scenes'),
)

SCENE_LOADERS

Scene loaders are classes responsible for loading scenes or geometry
from different formats.

The default scene loaders are:

SCENE_LOADERS = (
 "demosys.loaders.scene.gltf.GLTF2",
 "demosys.loaders.scene.wavefront.ObjLoader",
)

DATA_DIRS/DATA_FINDERS

Same principle as PROGRAM_DIRS and PROGRAM_FINDERS.
This is where the system looks for data files. These are
generic loaders for binary, text and json data (or anything you want).

Finder classes
DATA_FINDERS = (
 'demosys.core.scenefiles.finders.FileSystemFinder',
 'demosys.core.scenefiles.finders.EffectDirectoriesFinder'
)

Absolute path to a project-global scene directory
DATA_DIRS = (
 os.path.join(PROJECT_DIR, 'resources/scenes'),
)

DATA_LOADERS

Data loaders are classes responsible for loading miscellaneous
data files. These are fairly easy to implement
if you need to support something custom.

The default data loaders are:

DATA_LOADERS = (
 'demosys.loaders.data.binary.Loader',
 'demosys.loaders.data.text.Loader',
 'demosys.loaders.data.json.Loader',
)

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 demosys	

 	
 	
 demosys.effects	

 	
 	
 demosys.geometry	

 	
 	
 demosys.opengl.vao	

Index

 _
 | B
 | C
 | D
 | E
 | G
 | I
 | L
 | N
 | P
 | Q
 | R
 | S
 | T
 | V
 | W

_

 	
 	__init__() (demosys.effects.Effect method)

B

 	
 	BaseTimer (class in demosys.timers.base)

 	
 	bbox() (in module demosys.geometry)

 	buffer() (demosys.opengl.vao.VAO method)

C

 	
 	create_normal_matrix() (demosys.effects.Effect method)

 	create_projection() (demosys.effects.Effect method)

 	
 	create_transformation() (demosys.effects.Effect method)

 	ctx (demosys.effects.Effect attribute)

 	cube() (in module demosys.geometry)

D

 	
 	demosys.effects (module)

 	demosys.geometry (module)

 	
 	demosys.opengl.vao (module)

 	draw() (demosys.effects.Effect method)

E

 	
 	Effect (in module demosys.effects)

G

 	
 	get_data() (demosys.effects.Effect method)

 	get_effect() (demosys.effects.Effect method)

 	get_effect_class() (demosys.effects.Effect method)

 	get_program() (demosys.effects.Effect method)

 	
 	get_scene() (demosys.effects.Effect method)

 	get_texture() (demosys.effects.Effect method)

 	get_time() (demosys.timers.base.BaseTimer method)

 	get_track() (demosys.effects.Effect method)

I

 	
 	index_buffer() (demosys.opengl.vao.VAO method)

 	
 	instance() (demosys.opengl.vao.VAO method)

L

 	
 	label (demosys.effects.Effect attribute)

N

 	
 	name (demosys.effects.Effect attribute)

P

 	
 	pause() (demosys.timers.base.BaseTimer method)

 	plane_xz() (in module demosys.geometry)

 	
 	points_random_3d() (in module demosys.geometry)

 	post_load() (demosys.effects.Effect method)

Q

 	
 	quad_2d() (in module demosys.geometry)

 	
 	quad_fs() (in module demosys.geometry)

R

 	
 	release() (demosys.opengl.vao.VAO method)

 	render() (demosys.opengl.vao.VAO method)

 	
 	render_indirect() (demosys.opengl.vao.VAO method)

 	runnable (demosys.effects.Effect attribute)

S

 	
 	set_time() (demosys.timers.base.BaseTimer method)

 	sphere() (in module demosys.geometry)

 	
 	start() (demosys.timers.base.BaseTimer method)

 	stop() (demosys.timers.base.BaseTimer method)

 	sys_camera (demosys.effects.Effect attribute)

T

 	
 	toggle_pause() (demosys.timers.base.BaseTimer method)

 	
 	transform() (demosys.opengl.vao.VAO method)

V

 	
 	VAO (class in demosys.opengl.vao)

W

 	
 	window (demosys.effects.Effect attribute)

Resources

Note: See opengl.rst for snippets for this

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/SimLife3.png

_static/ajax-loader.gif

_images/SimLife2.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 demosys-py documentation

 		
 Getting Started

 		
 Create a virtualenv

 		
 Setting up a Project

 		
 Creating an Effect Package

 		
 User Guide

 		
 Effects

 		
 The Effect Package

 		
 Dependencies

 		
 Resources

 		
 Project

 		
 Effects

 		
 manage.py

 		
 Effect Templates

 		
 Management Commands

 		
 The geometry module

 		
 Scene/Mesh File Formats

 		
 Generating Custom Geometry

 		
 Timers

 		
 Standard Timers

 		
 Custom Timer

 		
 Timeline

 		
 Matrix and Vector math with pyrr

 		
 Examples

 		
 Type conversion

 		
 Performance

 		
 Audio

 		
 Controls

 		
 Basic Keyboard Controls

 		
 Camera Controls

 		
 Reference

 		
 Effect

 		
 Initialization

 		
 Draw Methods

 		
 Resource Methods

 		
 Utility Methods

 		
 Attributes

 		
 VAO

 		
 Methods

 		
 geometry

 		
 Functions

 		
 Settings

 		
 OPENGL

 		
 WINDOW

 		
 SCREENSHOT_PATH

 		
 MUSIC

 		
 TIMER

 		
 ROCKET

 		
 TIMELINE

 		
 PROGRAM_DIRS/PROGRAM_FINDERS

 		
 PROGRAM_LOADERS

 		
 TEXTURE_DIRS/TEXTURE_FINDERS

 		
 TEXTURE_LOADERS

 		
 SCENE_DIRS/SCENE_FINDERS

 		
 SCENE_LOADERS

 		
 DATA_DIRS/DATA_FINDERS

 		
 DATA_LOADERS

_static/up.png

