
demosys-py Documentation
Release 2.0.0

Einar Forselv

Aug 21, 2018





Getting Started

1 Getting Started 3
1.1 Create a virtualenv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Setting up a Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Creating an Effect Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 User Guide 7
2.1 Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 The geometry module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Matrix and Vector math with pyrr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.8 Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Controls 17
3.1 Basic Keyboard Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Camera Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Reference 19
4.1 Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 VAO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Settings 25
5.1 OPENGL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 WINDOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 SCREENSHOT_PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 MUSIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5 TIMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.6 ROCKET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.7 TIMELINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.8 PROGRAM_DIRS/PROGRAM_FINDERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.9 PROGRAM_LOADERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.10 TEXTURE_DIRS/TEXTURE_FINDERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.11 TEXTURE_LOADERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.12 SCENE_DIRS/SCENE_FINDERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

i



5.13 SCENE_LOADERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.14 DATA_DIRS/DATA_FINDERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.15 DATA_LOADERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Indices and tables 31

Python Module Index 33

ii



demosys-py Documentation, Release 2.0.0

A Python 3 cross platform OpenGL 3.3+ core framework based on ModernGL

Warning: The documentation for 2.0 is currently work in progress and you may find some sections outdated

Getting Started 1

https://github.com/cprogrammer1994/ModernGL


demosys-py Documentation, Release 2.0.0

2 Getting Started



CHAPTER 1

Getting Started

Make sure you have Python 3.5 or later installed. On Windows and OS X you can simply install the latest Python 3 by
downloading an installer from the Official Python site.

1.1 Create a virtualenv

First of all create a directory for your project and navigate to it using a terminal. We assume Python 3.6 here.

OS X / Linux

python3.6 -m pip install virtualenv
python3.6 -m virtualenv env
source env/bin/activate

Windows

python36.exe -m pip install virtualenv
python36.exe -m virtualenv env
.\env\Scripts\activate

We have now created and activated an isolated Python environment and are ready to install packages without affecting
the Python versions in our operating system.

1.2 Setting up a Project

Install the demosys-py

pip install demosys-py

This will add a new command demosys-admin we use to create a project.

3

https://www.python.org/


demosys-py Documentation, Release 2.0.0

demosys-admin createproject myproject

This will generate the following files:

myproject
settings.py
project.py

manage.py

• settings.py: the settings for your project

• project.py: your project config

• manage.py: entrypoint script for running your project

These files can be left unchanged for now. We mainly need manage.py as an entrypoint to the framework and the
default settings should be enough.

• An overview of the settings can be found in the /reference/settings section.

• More information about projects can be found in the Project section.

1.3 Creating an Effect Package

In order to draw something to the screen we have to make an effect package with at least one effect. We can create
this effect package in the root or inside myproject. Since we don’t care about project (yet), we create it in the root.

demosys-admin createeffect cube

We should now have the following structure:

cube
effects.py
dependencies.py
resources

programs
cube

default.glsl

The cube directory is a copy of the deault effect pacakge template:

• The effects.py module containing one or multiple demosys.effects.Effect implementation

• A dependencies.py module describing effect package dependencies and resources for this package

• A local resources/programs directory for glsl shader programs specific to the effect

dependencies.py:

from demosys.resources.meta import ProgramDescription

# We don't depend on any other effect packages at the moment
effect_packages = []

# We tell the system to load our shader program storing it with label "cube_plain".
# The shader program can then be obtained in the effect instance using this label.
resources = [

ProgramDescription(label='cube_plain', path='cube_plain.glsl'),
]

4 Chapter 1. Getting Started



demosys-py Documentation, Release 2.0.0

Other resource types are also supported such as textures, programs, scenes/meshes and miscellaneous data types. More
on this in the /user_guide/resources section.

Also take a minute to look through the effects.py module. It contains a fair amount of comments what will
explain things. This should be very recognizalbe if you have worked with OpenGL.

Note: Notice the programs directory also has a sub-folder with the same name as the effect package. This is
because these directories are added to a search path for all programs and the only way to make these resources unique
is to put them in a directory.

We can now run the effect that shows a spinning cube

python manage.py runeffect cube

Effect packages can be reusable between projects and can also potentially be shared with others as python packages in
private repos or on Python Package Index.

1.3. Creating an Effect Package 5

http://test.org


demosys-py Documentation, Release 2.0.0

6 Chapter 1. Getting Started



CHAPTER 2

User Guide

2.1 Effects

In order to actually render something to the screen you need to make one or multiple effects. What these effects are
doing is entirely up to you. Effects have methods for fetching loaded resources and existing effect instances. Effects
can also create new instances of effects if needed. This would happend during initialization.

Effect examples can be found in the examples directory in the root of the repository.

2.1.1 The Effect Package

The effect package should have the following structure (assuming our effect is named “cube”).

cube
effects.py
dependencies.py
resources

programs
cube

cube.glsl
textures
scenes
data

The effects.py module can contain one or multiple effects. The effect package can also have no effects and all
and only provide resources for other effects to use. The effects.py module is still required to be present.

2.1.2 Dependencies

The dependencies.py module is required to be present. It describes its own resources and what effect packages
it may depend on.

Example:

7



demosys-py Documentation, Release 2.0.0

from demosys.resources.meta import ProgramDescription

effect_packages =
'full.python.path.to.another.package',

]

resources = [
ProgramDescription(label='cube_plain', path='cube_plain.glsl'),

]

Resources are given labels and effects can fetch them by this label. When adding effect package dependencies we
make the system aware of this package so their resources are also loaded. The effects in the depending package will
also be registered in the system and can be instantiated.

2.1.3 Resources

The resources directory contains fixed directory names where resources of specific types are supposed to be lo-
cated. When an effect package is loaded paths to these directories are added so the system can find them.

Note: Notice that the resource directories contains another sub-directory with the same name as the effect package.
This is because these folders are by default added to a project wide search path (for each resource type), so we should
place it in a directory to reduce the chance of a name collisions.

Having resources in the effect package itself is entirely optional. Resources can be located anywhere you want as long
as you tell the system where they can be found. This is covered in Settings.

Reasons to have resources in effect packages is to create an independent resuable effect package you could even
distribute. Also when a project grows with lots of effect packages it can be nice to keep the effect specific resources in
the effect package they belong to instead of putting all resources for the entire project in the same location.

The Effect base class have methods avaiable for fetching loaded resources. See the demosys.effects.Effect

2.2 Project

Before we can do anything with the framework we need to create a project. A project is simply a package containing
a settings.py module and a manage.py entrypoint script.

This can be auto-generated using the demosys-admin command:

demosys-admin createproject myproject

This will generate the following structure:

myproject
settings.py

manage.py

• settings.py is the settings for your project with good defaults. See Settings for more info.

• manage.py is the entrypoint for running your project

8 Chapter 2. User Guide



demosys-py Documentation, Release 2.0.0

2.2.1 Effects

A good idea to put effect packages inside the project package as this protects you from package name collisions. It’s
of course also fine to put them at the same level as your project or even have them in separate repositories and install
them as packages thought pip.

2.2.2 manage.py

The manage.py script is an alternative entry point to demosys-admin. Both can perform the same commands.
The main purpose of demosys-admin is to initially have an entry point to the commands creating a projects and
effects when we don’t have a manage.py yet.

Examples of manage.py usage:

# Create effect inside a project
python manage.py createeffect myproject/myeffect
# Run a specific effect
python manage.py runeffect myproject.myeffect
# Run using the configured effect manager
python manage.py run
# Run a cusom command
python manage.py <cusom command>

2.2.3 Effect Templates

A collection of effect templates reside in effect_templates directory. To list the available templates:

$ ./manage.py createeffect --template list
Available templates: cube_simple, sphere_textured, raymarching_simple

To create a new effect with a specific template

$ ./manage.py createeffect myproject/myeffect --template raymarching_simple

Note: If you find the current effect templates insufficent please make a pull request or report the issue on github.

2.2.4 Management Commands

Custom commands can be added to your project. This can be useful when you need additional tooling or whatever
you could imagine would be useful to run from manage.py.

Creating a new command is fairly straight forward. Inside your project package, create the management/
commands/ directories. Inside the commands directory we can add commands. Let’s add the command test.

The project structure (excluding effects) would look something like:

myproject
settings.py
management

commands
test.py

2.2. Project 9



demosys-py Documentation, Release 2.0.0

Notice we added a test module inside commands. The name of the module will be name of the command. We can
reach it by:

./manage.py test

Our test command would look like this:

from demosys.core.management.base import BaseCommand

class Command(BaseCommand):
help = "Test command"

def add_arguments(self, parser):
parser.add_argument("message", help="A message")

def handle(self, *args, **options):
print("The message was:", options['message'])

• add_arguments exposes a standard argparser we can add arguments for the command.

• handle is the actual command logic were the parsed arguments are passed in

• If the parameters to the command do not meet the requirements for the parser, a standard arparse help will be
printed to the terminal

• The command class must be named Command and there can only be one command per module

This is pretty much identical to who management commands are done in django.

2.3 The geometry module

The demosys.geometry module currently provides some simple functions to generate VAOs for simple things.

Examples:

from demosys import geometry
# Create a fullscreen quad for overing the entire screen
vao = geometry.quad_fs()
# Create a 1 x 1 quad on the xy plane
vao = geometry.quad_2f(with=1.0, height=1.0)
# Create a unit cube
vao = geometry.cube(1.0, 1.0, 1.0)
# Create a bounding box
vao = geometry.bbox()
# Create a sphere
vao = geometry.sphere(radius=0.5, sectors=32, rings=16)
# Random 10.000 random points in 3d
vao = geometry.points_random_3d(10_000)

Note: Improvements or suggestions can be made by through pull requests or issues on github.

See the geometry reference for more info.

10 Chapter 2. User Guide



demosys-py Documentation, Release 2.0.0

2.3.1 Scene/Mesh File Formats

The demosys.scene.loaders currently support loading wavefront obj files and gltf.

You can create your own scene loader by adding the loader class to SCENE_LOADERS.

SCENE_LOADERS = (
'demosys.scene.loaders.gltf.GLTF2',
'demosys.scene.loaders.wavefront.ObjLoader',

)

2.3.2 Generating Custom Geometry

To efficiently generate geometry in Python we must avoid as much memory allocation as possible. If performance
doesn’t matter, then take this section lightly. Lbraries like numpy can also be used to generate geometry.

The naive way of generating geometry would probably look something like this:

import numpy
import moderngl
from pyrr import Vector3

def random_points(count):
points = []
for p in range(count):

# Let's pretend we calculated random values for x, y, z
points.append(Vector3([x, y, x]))

# Create VBO enforcing float32 values with numpy
points_data = numpy.array(points, dtype=numpy.float32)

vao = VAO("random_points", mode=moderngl.POINTS)
vao.buffer(points_data, 'f4', "in_position")
return vao

This works perfectly fine, but we allocate a new list for every iteration and pyrr internally creates a numpy array. The
points list will also have to dynamically expand. This gets exponentially more ugly as the count value increases.

We move on to version 2:

def random_points(count):
# Pre-allocate a list containing zeros of length count * 3
points = [0] * count * 3
# Loop count times incrementing by 3 every frame
for p in range(0, count * 3, 3):

# Let's pretend we calculated random values for x, y, z
points[p] = x
points[p + 1] = y
points[p + 2] = z

points_data = numpy.array(points, dtype=numpy.float32)

This version is orders of magnitude faster because we don’t allocate memory in the loop. It has one glaring flaw. It’s
not a very pleasant read even for such simple task, and it will not get any better if we add more complexity.

Let’s move on to version 3:

2.3. The geometry module 11



demosys-py Documentation, Release 2.0.0

def random_points(count):
def generate():

for p in range(count):
# Let's pretend we calculated random values for x, y, z
yield x
yield y
yield z

points_data = numpy.fromiter(generate(), count=count * 3, dtype=numpy.float32)

Using generators in Python like this is much a cleaner way. We also take advantage of numpy’s fromiter() that
basically slurps up all the numbers we emit with yield into its internal buffers. By also telling numpy what the final
size of the buffer will be using the count parameter, it will pre-allocate this not having to dynamically increase its
internal buffer.

Generators are extremely simple and powerful. If things get complex we can easily split things up in several functions
because Python’s yield from can forward generators.

Imagine generating a single VBO with interleaved position, normal and uv data:

def generate_stuff(count):
# Returns a distorted position of x, y, z
def pos(x, y, z):

# Calculate..
yield x
yield y
yield x

def normal(x, y, z):
# Calculate
yield x
yield y
yield z

def uv(x, y, x):
# Calculate
yield u
yield v

def generate(count):
for i in range(count):

# resolve current x, y, z pos
yield from pos(x, y, z)
yield from normal(x, y, z)
yield from uv(x, y, z)

interleaved_data = numpy.fromiter(generate(), count=count * 8, dtype=numpy.
→˓float32)

2.4 Timers

Timers are classes keeping track of time passing the value to the effect’s draw methods. We should assume that time
can move in any direction at any speed. Time is always reported as a float in seconds.

The default timer if not specified in settings:

12 Chapter 2. User Guide



demosys-py Documentation, Release 2.0.0

TIMER = 'demosys.timers.Timer'

This is a simple timer starting at 0 when effects start drawing. All timers should respond correctly to pause SPACE.

2.4.1 Standard Timers

• demosys.timers.Timer: Default timer just tracking time in seconds

• demosys.timers.Music: Timer playing music reporting duration in the song

• demosys.timers.RocketTimer: Timer using the rocket sync system

• demosys.timers.RocketMusicTimer: Timer using the rocket sync system with music playback

2.4.2 Custom Timer

You create a custom timer by extending demosys.timers.base.BaseTimer.

class demosys.timers.base.BaseTimer(**kwargs)
Timer based on glfw time

get_time()
Get the current time in seconds (float)

pause()
Pause the timer

set_time(value)
Set the current time

start()
Start the timer

stop()
Stop the timer

toggle_pause()
Toggle pause

2.5 Timeline

Timeline info

2.6 Matrix and Vector math with pyrr

Pyrr has both a procedural and object oriented api.

See pyrr for official docs.

Note: We should probably add some more examples here. Feel free to make an issue or pull request on github.

2.5. Timeline 13

https://pyrr.readthedocs.io/en/latest/


demosys-py Documentation, Release 2.0.0

2.6.1 Examples

Identity

# procedural
>> m = matrix44.create_identity()
>> print(m)
array([[ 1., 0., 0., 0.],

[ 0., 1., 0., 0.],
[ 0., 0., 1., 0.],
[ 0., 0., 0., 1.]])

# object
>> m = Matrix44.identity()
>> print(m)
array([[ 1., 0., 0., 0.],

[ 0., 1., 0., 0.],
[ 0., 0., 1., 0.],
[ 0., 0., 0., 1.]])

Matrices produced by Matrix44 are also just numpy arrays as the class extends numpy.ndarray. We can pretty
much use the APIs interchangeably unless we rely on a method in the class. They can both be passed right into shaders
as matrix uniforms.

Rotation

# Short version
mat = Matrix44.from_eulers(Vector3(rotation))

# Long version
rot_x = matrix44.create_from_x_rotation(rotation[0])
rot_y = matrix44.create_from_y_rotation(rotation[1])
rot_z = matrix44.create_from_z_rotation(rotation[2])
mat = matrix44.multiply(x, y)
mat = matrix44.multiply(mat, z)

2.6.2 Type conversion

# mat4 to mat3
mat3 = Matrix33.from_matrix44(mat)
# mat3 to mat4
mat4 = Matrix44.from_matrix33(mat)

2.7 Performance

When using a high level language such as Python for real time rendering we must be extra careful with the total time
we spend in Python code every frame. At 60 frames per second we only have 16 milliseconds to get the job done. This
is ignoring delays or blocks caused by OpenGL calls.

Note: How important performance is will of course depend on the project. Visualization for a scientific application
doing some heavy calculations would probably not need to run at 60+ fps. It’s also not illegal to not care about
performance.

14 Chapter 2. User Guide



demosys-py Documentation, Release 2.0.0

Probably the biggest enemy to performance in python is memory allocation. Try to avoid creating new objects when
possible.

Try to do as much as possible on the GPU. Use features like transform feedback to alter buffer data and use your
creativity to find efficient solutions.

When doing many draw calls, do as little as possible between those draw calls. Doing matrix math in python even with
numpy or pyrr is extremely slow. Try to calculate them ahead of time. Also moving the matrix calculations inside the
shader programs can help greatly. You can easily do 1000 draw calls using the same cube and still run 60+ fps even
on older hardware. The minute you throw in some matrix calculation in that loop you might be able to draw 50 before
the framerate tanks.

Performance in rendering is not straight forward to measure in any language. Simply adding timers in the code will
not really tell us much unless we also query OpenGL about the performance.

We can also strive to do more with less. Rendering, in the end, is really just about creating illusions.

2.8 Audio

We currently use pygame’s mixer module for music playback. More work needs to be done to find a better alternative
as depending on such a huge package should not be needed.

You will have to manually add pygame to your requirements and pip install the package.

In oder to get pygame to work you probably need sdl, sdl_mixer and libvorbis. These are binary dependencies and not
python packages.

We need to figure out what requiremnets are actually needed.

As mentioned in readme, the state of audio is not in good shape.

The sound player an be a bit wonky at times on startup refusing to play on some platforms. We have tried a few
libraries and ended up using pygame’s mixer module. (Optional setup for this)

Audio Requirements:

• As the current position in the music is what all draw timers are based on, we need a library that can deliver very
accurate value for this.

• Efficient and accurate seeking + pause support

• Some way to extract simple data from the music for visualisation

2.8. Audio 15



demosys-py Documentation, Release 2.0.0

16 Chapter 2. User Guide



CHAPTER 3

Controls

3.1 Basic Keyboard Controls

• ESC to exit

• SPACE to pause the current time (tells the configured timer to pause)

• X for taking a screenshot (output path is configurable in Settings)

3.2 Camera Controls

You can include a system camera in your effects through self.sys_camera. Simply apply the view_matrix of
the camera to your transformations.

Keyboard Controls:

• W forward

• S backwards

• A strafe left

• D strafe right

• Q down the y axis

• E up the y axis

• R reload shader programs (Needs configuration)

Mouse Controls

• Standard yaw/pitch camera rotation with mouse

17



demosys-py Documentation, Release 2.0.0

18 Chapter 3. Controls



CHAPTER 4

Reference

4.1 Effect

demosys.effects.Effect
Effect base class that should be extended when making an effect

Example:

from demosys.effects import Effect

class MyEffect(Effect):
def __init__(self):

# Initalization

def draw(self, time, frametime, target):
# Draw stuff

4.1.1 Initialization

Effect.__init__(*args, **kwargs)
Implement the initialize when extending the class. This method is responsible for fetching resources and doing
genereal initalization of the effect.

The effect initializer is called when all resources are loaded with the exception of resources loaded by other
effects in the initializer.

The siganture of this method is entirely up to you.

You do not have to call the superclass initializer though super()

Example:

19



demosys-py Documentation, Release 2.0.0

def __init__(self):
# Fetch reference to resource by their label
self.program = self.get_program('simple_textured')
self.texture = self.get_texture('bricks')
# .. create a cube etc ..

Effect.post_load()
Override this method if needed when creating an effect.

Called after all effects are initialized before drawing starts. Some initialization may be neccessary to do here
such as interaction with other effects.

4.1.2 Draw Methods

Effect.draw(time, frametime, target)
Draw function called by the system every frame when the effect is active. You are supposed to override this
method.

Parameters

• time (float) – The current time in seconds.

• frametime (float) – The time the previous frame used to render in seconds.

• target (moderngl.Framebuffer) – The target FBO for the effect.

4.1.3 Resource Methods

Effect.get_texture(label)→ moderngl.texture.Texture
Get a texture by its label

Parameters label (str) – The Label for the texture

Returns The py:class:moderngl.Texture instance

Effect.get_program(label)→ moderngl.program.Program
Get a program by its label

Parameters label (str) – The label for the program

Returns: py:class:moderngl.Program instance

Effect.get_scene(label)→ demosys.scene.scene.Scene
Get a scene by its label

Parameters label (str) – The label for the scene

Returns: The Scene instance

Effect.get_data(label)→ Any
Get a data instance by its label

Parameters label (str) – Label for the data instance

Returns Contents of the data file

Effect.get_effect(label)→ demosys.effects.effect.Effect
Get an effect instance by label. This is only possible when you have your own Project

Parameters label (str) – Label for the data file

Returns: The Effect instance

20 Chapter 4. Reference



demosys-py Documentation, Release 2.0.0

Effect.get_effect_class(effect_name, package_name=None)→ Type[Effect]
Get an effect class.

Parameters effect_name (str) – Name of the effect class

Keyword Arguments package_name (str) – The package the effect belongs to

Returns Effect class

Effect.get_track(name)→ rocket.tracks.Track
This is only avaiable when using a Rocket timer.

Get or create a rocket track. This only makes sense when using rocket timers. If the resource is not loaded yet,
an empty track object is returned that will be populated later.

Parameters name (str) – The rocket track name

Returns The rocket.Track instance

4.1.4 Utility Methods

Effect.create_projection(fov=75.0, near=1.0, far=100.0, aspect_ratio=None)
Create a projection matrix with the following parameters. When aspect_ratio is not provided the config-
ured aspect ratio for the window will be used.

:param : param float fov: Field of view (float) :param : param float near: Camera near value :param : param
float far: Camrea far value

Parameters ratio (float) – Aspect ratio of the window

Returns: The projection matrix as a float32 numpy.array

Effect.create_transformation(rotation=None, translation=None)
Creates a transformation matrix woth rotations and translation.

Parameters

• rotation – 3 component vector as a list, tuple, or pyrr.Vector3

• translation – 3 component vector as a list, tuple, or pyrr.Vector3

Returns A 4x4 matrix as a numpy.array

Effect.create_normal_matrix(modelview)
Creates a normal matrix from modelview matrix

Parameters modelview – The modelview matrix

Returns A 3x3 Normal matrix as a numpy.array

4.1.5 Attributes

Effect.runnable = True
The runnable status of the effect instance. A runnable effect should be able to run with the runeffect
command or run in a project

Effect.ctx
The ModernGL context

Effect.window
The Window

4.1. Effect 21



demosys-py Documentation, Release 2.0.0

Effect.sys_camera
The system camera responding to input

Effect.name
Full python path to the effect

Effect.label
Full python path to the effect

4.2 VAO

class demosys.opengl.vao.VAO(name, mode=4)
Represents a vertex array object. A name must be provided for debug puporses. The default draw mode is
moderngl.TRIANGLES

4.2.1 Methods

VAO.buffer(buffer, buffer_format:str, attribute_names, per_instance=False)
Register a buffer/vbo for the VAO. This can be called multiple times. adding multiple buffers (interleaved or
not)

Parameters

• buffer – The buffer object. Can be ndarray or Buffer

• buffer_format – The format of the buffer (‘f’, ‘u’, ‘i’)

Returns The buffer object

VAO.index_buffer(buffer, index_element_size=4)
Set the index buffer for this VAO

Parameters

• buffer – Buffer object or ndarray

• index_element_size – Byte size of each element. 1, 2 or 4

VAO.instance(program:Program)→ VertexArray
Obtain the moderngl.VertexArray instance for the program

Returns moderngl.VertexArray

VAO.render(program:Program, mode=None, vertices=-1, first=0, instances=1)
Render the VAO.

Parameters

• program – The program to draw with

• mode – Override the draw mode (TRIANGLES etc)

• vertices – The number of vertices to transform

• first – The index of the first vertex to start with

• instances – The number of instances

VAO.render_indirect(program:Program, buffer, mode=None, count=-1, first=0)
The render primitive (mode) must be the same as the input primitive of the GeometryShader. The draw com-
mands are 5 integers: (count, instanceCount, firstIndex, baseVertex, baseInstance).

22 Chapter 4. Reference



demosys-py Documentation, Release 2.0.0

Parameters

• program – (Buffer) Indirect drawing commands.

• buffer – (Buffer) Indirect drawing commands.

• mode – (int) By default TRIANGLES will be used.

• count – (int) The number of draws.

• first – (int) The index of the first indirect draw command.

VAO.transform(program:Program, buffer:Buffer, mode=None, vertices=-1, first=0, instances=1)
Transform vertices. Stores the output in a single buffer.

Parameters

• program – The program

• buffer – The buffer to store the output

• mode – Draw mode (for example POINTS

• vertices – The number of vertices to transform

• first – The index of the first vertex to start with

• instances – The number of instances

VAO.release(buffer=True)
Destroy the vao object

Parameters buffers – (bool) also release buffers

4.3 geometry

The geometry module is a collection of functions generating simple geometry / VAOs.

4.3.1 Functions

demosys.geometry.quad_fs()→ VAO
Creates a screen aligned quad.

demosys.geometry.quad_2d(width, height, xpos=0.0, ypos=0.0)→ VAO
Creates a 2D quad VAO using 2 triangles.

Parameters

• width – Width of the quad

• height – Height of the quad

• xpos – Center position x

• ypos – Center position y

demosys.geometry.cube(width, height, depth, center=(0.0, 0.0, 0.0), normals=True, uvs=True) →
VAO

Generates a cube VAO. The cube center is (0.0, 0.0 0.0) unless other is specified.

Parameters

• width – Width of the cube

4.3. geometry 23



demosys-py Documentation, Release 2.0.0

• height – height of the cube

• depth – depth of the cube

• center – center of the cube

• normals – (bool) Include normals

• uvs – (bool) include uv coordinates

Returns VAO representing the cube

demosys.geometry.bbox(width=1.0, height=1.0, depth=1.0)→ VAO
Generates a bounding box. This is simply a box with LINE_STRIP as draw mode

Parameters

• width – Width of the box

• height – height of the box

• depth – depth of the box

Returns VAO

demosys.geometry.plane_xz(size=(10, 10), resolution=(10, 10))→ VAO
Generates a plane on the xz axis of a specific size and resolution

Parameters

• size – (x, y) tuple

• resolution – (x, y) tuple

Returns VAO

demosys.geometry.points_random_3d(count, range_x=(-10.0, 10.0), range_y=(-10.0, 10.0),
range_z=(-10.0, 10.0), seed=None)→ VAO

Generates random positions

Parameters

• count – Number of points

• range_x – min-max range for x axis

• range_y – min-max range for y axis

• range_z – min-max range for z axis

• seed – The random seed to be used

demosys.geometry.sphere(radius=0.5, sectors=32, rings=16)→ VAO
Generate a sphere

Parameters

• radius – Radius or the sphere

• rings – number or horizontal rings

• sectors – number of vertical segments

Returns VAO containing the sphere

24 Chapter 4. Reference



CHAPTER 5

Settings

The settings.py file must be present in your project in order to run the framework.

When running your project with manage.py, the script will set the DEMOSYS_SETTINGS_MODULE environment
variable. This tells the framework where it can import the project settings. If the environment variable is not set, the
project cannot start.

5.1 OPENGL

Sets the minimum required OpenGL version to run your project. A forward compatible core context will be always be
requested. This means the system will pick the highest available OpenGL version available.

The default and lowest OpenGL version is 3.3 to support a wider range of hardware.

Note: To make your project work on OS X you cannot move past version 4.1.

OPENGL = {
"version": (3, 3),

}

Only increase the OpenGL version if you use features above 3.3.

5.2 WINDOW

Window/screen properties. Most importantly the class attribute decides what class should be used to handle the
window.

The currently supported classes are:

• demosys.context.pyqt.Window PyQt5 window (default)

25



demosys-py Documentation, Release 2.0.0

• demosys.context.glfw.Window pyGLFW window

• demosys.context.pyglet.Window Pyglet window (Not for OS X)

• demosys.context.headless.Window Headless window

WINDOW = {
"class": "demosys.context.pyqt.Window",
"size": (1280, 768),
"aspect_ratio": 16 / 9,
"fullscreen": False,
"resizable": False,
"vsync": True,
"title": "demosys-py",
"cursor": False,

}

Other Properties:

• size: The window size to open.

• aspect_ratio is the enforced aspect ratio of the viewport.

• fullscreen: True if you want to create a context in fullscreen mode

• resizable: If the window should be resizable. This only applies in windowed mode.

• vsync: Only render one frame per screen refresh

• title: The visible title on the window in windowed mode

• cursor: Should the mouse cursor be visible on the screen? Disabling this is also useful in windowed mode
when controlling the camera on some platforms as moving the mouse outside the window can cause issues.

The created window frame buffer will by default use:

• RGBA8 (32 bit per pixel)

• 24 bit depth buffer

• Double buffering

• color and depth buffer is cleared for every frame

5.3 SCREENSHOT_PATH

Absolute path to the directory screenshots will be saved. Screenshots will end up in the project root of not defined. If
a path is configured, the directory will be auto-created.

SCREENSHOT_PATH = os.path.join(PROJECT_DIR, 'screenshots')

5.4 MUSIC

The MUSIC attribute is used by timers supporting audio playback. When using a timer not requiring an audio file, the
value is ignored. Should contain a string with the absolute path to the audio file.

Note: Getting audio to work requires additional setup. See the /guides/audio section.

26 Chapter 5. Settings



demosys-py Documentation, Release 2.0.0

MUSIC = os.path.join(PROJECT_DIR, 'resources/music/tg2035.mp3')

5.5 TIMER

This is the timer class that controls the current time in your project. This defaults to demosys.timers.clock.
Timer that is simply keeps track of system time.

TIMER = 'demosys.timers.clock.Timer'

Other timers are:

• demosys.timers.MusicTimer requires MUSIC to be defined and will use the current time in an audio
file.

• demosys.timers.RocketTimer is the same as the default timer, but uses the pyrocket library with options
to connect to an external sync tracker.

• demosys.timers.RocketMusicTimer requires MUSIC and ROCKET to be configured.

Custom timers can be created. More information can be found in the Timers section.

5.6 ROCKET

Configuration of the pyrocket sync-tracker library.

• rps: Number of rows per second

• mode: The mode to run the rocket client

– editor: Requires a rocket editor to run so the library can connect to it

– project: Loads the project file created by the editor and plays it back

– files: Loads the binary track files genrated by the client through remote export in the editor

• project_file: The absolute path to the project file (xml file)

• files: The absolute path to the directory containing binary track data

ROCKET = {
"rps": 24,
"mode": "editor",
"files": None,
"project_file": None,

}

5.7 TIMELINE

A timeline is a class deciding what effect(s) should be rendered (including order) at any given point in time.

# Default timeline only rendeing a single effect at all times
TIMELINE = 'demosys.timeline.single.Timeline'

You can create your own class handling this logic. More info in the Timeline section.

5.5. TIMER 27

https://github.com/Contraz/pyrocket


demosys-py Documentation, Release 2.0.0

5.8 PROGRAM_DIRS/PROGRAM_FINDERS

PROGRAM_DIRS contains absolute paths the FileSystemFinder will look for shaders programs.

EffectDirectoriesFinder will look for programs in all registered effect packages in the order they were
added. This assumes you have a resources/programs directory in your effect packages.

A resource can have the same path in multiple locations. The system will return the last occurance of the resource.
This way it is possible to override resources.

# This is the defaults is the property is not defined
PROGRAM_FINDERS = (

'demosys.core.programfiles.finders.FileSystemFinder',
'demosys.core.programfiles.finders.EffectDirectoriesFinder',

)

# Register a project-global programs directory
# These paths are searched last
PROGRAM_DIRS = (

os.path.join(PROJECT_DIR, 'resources/programs'),
)

PROGRAM_DIRS can really be any directory and doesn’t need to end with /programs

5.9 PROGRAM_LOADERS

Program loaders are classes responsible for loading resources. Custom loaders can easily be created.

Programs have a default set of loaders if not specified.

PROGRAM_LOADERS = (
'demosys.loaders.program.single.Loader',
'demosys.loaders.program.separate.Loader',

)

5.10 TEXTURE_DIRS/TEXTURE_FINDERS

Same principle as `PROGRAM`_DIRS and PROGRAM_FINDERS. The EffectDirectoriesFinder will look
for a textures directory in effects.

# Finder classes
TEXTURE_FINDERS = (

'demosys.core.texturefiles.finders.FileSystemFinder',
'demosys.core.texturefiles.finders.EffectDirectoriesFinder'

)

# Absolute path to a project-global texture directory
TEXTURE_DIRS = (

os.path.join(PROJECT_DIR, 'resources/textures'),
)

28 Chapter 5. Settings



demosys-py Documentation, Release 2.0.0

5.11 TEXTURE_LOADERS

Texture loaders are classes responsible for loading textures. These can be easily customized.

The default texture loaders:

TEXTURE_LOADERS = (
'demosys.loaders.texture.t2d.Loader',
'demosys.loaders.texture.array.Loader',

)

5.12 SCENE_DIRS/SCENE_FINDERS

Same principle as PROGRAM_DIRS and PROGRAM_FINDERS. This is where scene files such as wavefront and gltf
files are loaded from. The EffectDirectoriesFinder will look for a scenes directory

# Finder classes
SCENE_FINDERS = (

'demosys.core.scenefiles.finders.FileSystemFinder',
'demosys.core.scenefiles.finders.EffectDirectoriesFinder'

)

# Absolute path to a project-global scene directory
SCENE_DIRS = (

os.path.join(PROJECT_DIR, 'resources/scenes'),
)

5.13 SCENE_LOADERS

Scene loaders are classes responsible for loading scenes or geometry from different formats.

The default scene loaders are:

SCENE_LOADERS = (
"demosys.loaders.scene.gltf.GLTF2",
"demosys.loaders.scene.wavefront.ObjLoader",

)

5.14 DATA_DIRS/DATA_FINDERS

Same principle as PROGRAM_DIRS and PROGRAM_FINDERS. This is where the system looks for data files. These
are generic loaders for binary, text and json data (or anything you want).

# Finder classes
DATA_FINDERS = (

'demosys.core.scenefiles.finders.FileSystemFinder',
'demosys.core.scenefiles.finders.EffectDirectoriesFinder'

)

# Absolute path to a project-global scene directory

(continues on next page)

5.11. TEXTURE_LOADERS 29



demosys-py Documentation, Release 2.0.0

(continued from previous page)

DATA_DIRS = (
os.path.join(PROJECT_DIR, 'resources/scenes'),

)

5.15 DATA_LOADERS

Data loaders are classes responsible for loading miscellaneous data files. These are fairly easy to implement if you
need to support something custom.

The default data loaders are:

DATA_LOADERS = (
'demosys.loaders.data.binary.Loader',
'demosys.loaders.data.text.Loader',
'demosys.loaders.data.json.Loader',

)

30 Chapter 5. Settings



CHAPTER 6

Indices and tables

• genindex

• modindex

• search

31



demosys-py Documentation, Release 2.0.0

32 Chapter 6. Indices and tables



Python Module Index

d
demosys.effects, 19
demosys.geometry, 23
demosys.opengl.vao, 22

33



demosys-py Documentation, Release 2.0.0

34 Python Module Index



Index

Symbols
__init__() (demosys.effects.Effect method), 19

B
BaseTimer (class in demosys.timers.base), 13
bbox() (in module demosys.geometry), 24
buffer() (demosys.opengl.vao.VAO method), 22

C
create_normal_matrix() (demosys.effects.Effect method),

21
create_projection() (demosys.effects.Effect method), 21
create_transformation() (demosys.effects.Effect method),

21
ctx (demosys.effects.Effect attribute), 21
cube() (in module demosys.geometry), 23

D
demosys.effects (module), 19
demosys.geometry (module), 23
demosys.opengl.vao (module), 22
draw() (demosys.effects.Effect method), 20

E
Effect (in module demosys.effects), 19

G
get_data() (demosys.effects.Effect method), 20
get_effect() (demosys.effects.Effect method), 20
get_effect_class() (demosys.effects.Effect method), 21
get_program() (demosys.effects.Effect method), 20
get_scene() (demosys.effects.Effect method), 20
get_texture() (demosys.effects.Effect method), 20
get_time() (demosys.timers.base.BaseTimer method), 13
get_track() (demosys.effects.Effect method), 21

I
index_buffer() (demosys.opengl.vao.VAO method), 22

instance() (demosys.opengl.vao.VAO method), 22

L
label (demosys.effects.Effect attribute), 22

N
name (demosys.effects.Effect attribute), 22

P
pause() (demosys.timers.base.BaseTimer method), 13
plane_xz() (in module demosys.geometry), 24
points_random_3d() (in module demosys.geometry), 24
post_load() (demosys.effects.Effect method), 20

Q
quad_2d() (in module demosys.geometry), 23
quad_fs() (in module demosys.geometry), 23

R
release() (demosys.opengl.vao.VAO method), 23
render() (demosys.opengl.vao.VAO method), 22
render_indirect() (demosys.opengl.vao.VAO method), 22
runnable (demosys.effects.Effect attribute), 21

S
set_time() (demosys.timers.base.BaseTimer method), 13
sphere() (in module demosys.geometry), 24
start() (demosys.timers.base.BaseTimer method), 13
stop() (demosys.timers.base.BaseTimer method), 13
sys_camera (demosys.effects.Effect attribute), 21

T
toggle_pause() (demosys.timers.base.BaseTimer

method), 13
transform() (demosys.opengl.vao.VAO method), 23

V
VAO (class in demosys.opengl.vao), 22

35



demosys-py Documentation, Release 2.0.0

W
window (demosys.effects.Effect attribute), 21

36 Index


	Getting Started
	Create a virtualenv
	Setting up a Project
	Creating an Effect Package

	User Guide
	Effects
	Project
	The geometry module
	Timers
	Timeline
	Matrix and Vector math with pyrr
	Performance
	Audio

	Controls
	Basic Keyboard Controls
	Camera Controls

	Reference
	Effect
	VAO
	geometry

	Settings
	OPENGL
	WINDOW
	SCREENSHOT_PATH
	MUSIC
	TIMER
	ROCKET
	TIMELINE
	PROGRAM_DIRS/PROGRAM_FINDERS
	PROGRAM_LOADERS
	TEXTURE_DIRS/TEXTURE_FINDERS
	TEXTURE_LOADERS
	SCENE_DIRS/SCENE_FINDERS
	SCENE_LOADERS
	DATA_DIRS/DATA_FINDERS
	DATA_LOADERS

	Indices and tables
	Python Module Index

